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Abstract—The notion of a multiphase continuum is applied to the problem of determining the flow properties
of two-phase rocks. The assumptions made include (i) that both the bulk rock and the constituent phases have
a linear viscous rheology, (1) that the phases are uniformly mixed and distributed in the rocks, and (i) that
no segregation occurs during the deformation. A theoretical analysis is made assuming the additive relation-
ships for the linear momentum, the stresses and the entropy production rates. Two possible relationships
between the normalized bulk rock viscosity (the ratio of bulk rock viscosity to the viscosity of the less viscous
phase) and the volume fraction of the constituent phase are derived. The first relationship is linear (mode |
behaviour). while the second is non-linear (mode 2 behaviour). In mode 2 behaviour, the normalized bulk
rock viscosity decreases at first rapidly and then less so as the volume fraction of the less viscous phase
increases from zero. The rate of the initial rapid decrease in viscosity is in proportion to the viscosity contrast
between two phases and in inverse proportion to the density contrast. The mode 2 behaviour shows good
agreement with published deformation experiments of synthetic two-phase rocks. The bulk rock deformation
rate can be related (o those of the constituent phases. In mode | behaviour there is no deformation rate parti-
tioning. In contrast, in mode 2 behaviour the ratio of the deformation rate partition coefficients of the less vis-
cous phase to that of the more viscous phase is equal to the ratio of the inverse viscosity contrast to the
density contrast. This relationship corresponds to the rule of strain refraction derived for multilayer systems.
Mode 2 behaviour can be further subdivided into two regimes: one where the viscosity contrast is greater than
the density contrast (mode 2a), and a second where the opposite is true {mode 2b). In mode 2a behaviour
more strain is partitioned into the less viscous phase: while, in mode 2b behaviour more strain is partitioned

into the more viscous phase. .. 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Almost all rocks in the crust and the mantle are poly-
mineralic. Knowledge of the mechanical (and kin-
ematic) flow behaviour of multiphase materials is,
therefore, important in understanding mechanical
states and dynamic behaviour of the lithosphere and
asthenosphere. In addition, this information is useful
for structural geologists and petrologists trying to
reconstruct the original state of rocks using their
knowledge of the final state and the physical properties
of rocks. Much effort has been made to understand
the rheological properties of polymineralic rocks in
terms of their constituent phases and the microstruc-
tures (Gay., 1968; Bilby ¢t al.. 1975, Price, 1982;
Tharp, 1983; Ross et «l.. 1987, Jordan, 1987, 1988;
Handy, 1990, 1992, 1994; Tullis er al., 1991; Ji and
Zhao, 1993, 1994: Bloomfield and Covey-Crump,
1993; Dell’Angelo and Tullis, 1996; Zhao and Ji,
1997). The flow strength of rocks that are composed of
two solid phases has been investigated experimentally
(Price, 1982; Jordan, 1987, 1988; Ross ¢f al., 1987;
Bloomfield and Covey-Crump, 1993) and theoretically
(Gay, 1968 Tharp, 1983; Jordan, 1988; Handy, 1990,
1994; Tullis er al., 1991; Ji and Zhao, 1993, 1994;
Zhao and Ji, 1997).

An important observation from experimental work
is the presence of an abrupt drop in strength with only
a small addition of a weaker phases (e.g. Price, 1982;

Jordan, 1987; Ross er al., 1987). For example, in de-
formation experiments of synthetic calcite—halite
aggregates. Jordan (1987, 1988) observed an abrupt
drop in strength with a small addition of the weaker
halite phase and a subsequent further gentle decrease
with increasing volume fraction of halite. Jordan
(1988) ascribed this phenomenon to a discontinuous
microstructural change at intermediate compositions,
from a state of a load bearing framework in which
almost all the load is supported by the stronger phase,
to a state which is described by a two-block model
and in which almost all the strain is accommodated by
the weaker phase. Strictly speaking, however, the
model Jordan (1988) used for lower volume fractions
of the less viscous phase is only valid when one phase
is inviscid material. Moreover the application of the
model is limited to the case of large viscosity contrasts
between the two phases and much lower volume frac-
tions of the less viscous phase (e.g. Bloomfield and
Covey-Crump, 1993; Ji and Zhao, 1994). Zhao and Ji
(1997) presented a model that predicts the flow
strength of two-phase rocks on the basis of the fibre-
loading model. A good agreement is obtained between
the theory and the experimental observation. The
fibre-loading model is however, limited to low concen-
trations of the ‘fibre’ material, and its application is
limited to the case of uniaxial deformation.

It is clear that the physical properties of composite
materials will be related to those of the constituent
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phases not only in terms of mechanical behaviour but
also kinematic behaviour. In particular, an important
question is how the deformation rate of the composite
rock is related to deformation rate of its constituent
phases. The bulk deformation rate is likely to be parti-
tioned between its constituent phases. Some structural
geologists use the term ‘partitioning’ to indicate spatial
differences of flow properties in a rock body (e.g.
Lister and Williams, 1983). However, I prefer the term
distribution” for this phenomenon and in this contri-
bution I will use the term ‘partitioning’ to refer to
differences in deformation rate between constituent
phases at any point in a rock, in which the rock is
treated as a continuum.

In this paper | present a simple approach for deter-
mining the flow properties of a composite rock from
the properties of the constituent phases and the rock
compositions on the basis of the notion of a multi-
phase continuum, (also termed superimposed conti-
nua). The multiphase continuum is a model of a
heterogeneous medium that 1s composed of two or
more phases. The forerunner of the notion of a multi-
phase continuum was a construction developed for
continuum mechanics of a multicomponent material
(Truesdell, 1957. Truesdell and Toupin, 1960;
Truesdell, 1984). This construction considers multi-
component materials as continua in which several con-
tinua composed of their own component matcrials are
spatially surperimposed on each other (e.g. Bowen,
1976; Truesdell, 1984). On the basis of a similar idea
in continuum mechanics of multiphase material. multi-
phase materials are treated as a continua in which sev-
cral continua composed of their own phase material
are spatially superimposed on each other (c.g.
Passman, 1977; Passman e¢r af.. 1984; Dobran, 1985:;
Dobran. 1991). Thus, despite the fact that the multi-
phase material is not continuous, it can nevertheless be
treated as a continuum. In this approach multiphase
properties are measured in terms of a compositional
variable such as the volume fractions of constituent
phases. Accordingly, details of the spatial distribution
of constituent phases and other microstructural fea-
tures such as grain-size and grain-shape are not con-
sidered. The present approach implicitly assumes that
the rock 1s statistically isotropic. Any physical property
of a multiphase continuum can be related to those of
the constituent phases. The relationship may be de-
rived from additive relationships for linear momentum,
stress, and entropy production rate. It is assumed that
both the flow behaviour of composite rocks and that
of the constituent phases can be described by lincar
viscous constitutive relationships. The obtained results
contain analytical relationships between the bulk rock
viscosity (multiphase material as a whole), the volume
fraction of their constituent phases, and the physical
properties of the constituent phases. The relationships
between the deformation rates of constituent phases
and the deformation rate of the bulk rock, ie. defor-

Y.-T. TAKEDA

mation rate partitioning, is also derived. The obtained
results are compared with published experiments and it
1s shown that the present simple approach satisfac-
torily accounts for the experimentally observed flow
behaviours of two-phase rocks.

FLOW IN A MULTIPHASE CONTINUUM
Kinematics

Let B, be a body composed of a phase . For a
multiphase material that consists of two or more
phases, it is supposed that a sequence of bodies
B, z=1, 2 3,.... occupy the same region of
space simultaneously (Truesdell, 1984). Let X, be a
material point within a body B, The motion of
B, is the time sequential mapping of B, onto a
three-dimensional space as

X = x(X,. ). (1)

where 7 1s time. The velocity of phase » may be

defined by
ON( Xy, 1)
a7

V, =

Since the total linear momentum of a multiphase
material in a given region is the sum of the linear
momenta of each phase,

py=>y p,V.. (3)

where p is the bulk mass density of the multiphase
material, p, is the partial mass density of the phase 2,
and V7 is the mean velocity of the material. The bulk
mass density is the sum of the partial mass densities of

each phase.
pP=2 (4)

where the partial mass density is the mass of phase «
per unit volume of multiphase material.

P, = (/)2}'7. (5)

in which 7, is the mass of phase 2 per unit volume of
phase «. and ¢, is the volume fraction of phase .
Substituting equations (4) and (5) into equation (3)

we have
VY b= S g

In order to obtain the relationship between the velocity
gradients for each phase and that for the bulk system,
the gradient of the terms in equation (6) is taken and
this yields

(Z (/)1','7)V V= Z[((/)Y;'Z)VV1+V((/>7;'1) ® ux], (7)
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where u, is the velocity of phase « relative to the mean
velocity,

u, =V, —V, (8)

and the notation ® means the tensor product.
Similarly, the operation curl of terms in equation (6)
give

(Z (/)772)V X V:Z[((/)/,’Z)V X Vy+Vi(d,y,) x 142].
9

Using the vorticity vector, equation (9) becomes
(3 Yo = D[, 1)0s + V1) x ] (10)

where w 1s the vorticity vector of bulk material, and
., 1s the vorticity vector of phase x. Following the
usual practice, we can write the velocity gradient as
the sum of the symmetric deformation rate tensor and
the skew-symmetric spin tensor. Thus, equation (7)
may be rewritten as

(Z (/)7",',) (D + Wy)

where Dj is the deformation rate tensor of the bulk
material, W, 1s the spin tensor of the bulk material,
D, is the deformation rate tensor of phase %, and W}’
is the spin tensor of phase 2.

Stresses and constitutive equations

Goodman and Cowin (1972) suggested the following
constitutive relation for a granular material composed
of solid particles and a vacuum:

T('/' = T,‘,‘((/)“, (]5, V(/). (/), (}_ V{L D,‘/), (12)

where T is a stress tensor. ¢ is the volume fraction of
the granular particles, ¢g. V. and ¢ are, respectively,
the initial value, the gradient measured in a reference
frame fixed to the material, and a time derivative of
the volume fraction of the particles, and 0 is the tem-
perature. V0 is the thermal gradient, and Dj; is the de-
formation rate tensor. From thermodynamical
considerations, these workers derived the following re-
lationship,

T, - 70

b= oy + ADdy + 2uDy, (13)

where T,-/“ is the equilibrium stress, ¢ is the linear coef-
ficient for the time derivative of volume fraction of the
granular particles. g is the shear viscosity, 4 is the sec-
ond viscosity. and d;; is the Kronecker delta. Although
equation (13) is derived for granular materials and
there is no vacuum in my model, it can nevertheless be
used as a linear constitutive equation for the two-
phase material considered here, because there is formal
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agreement in relation to the constitutive relation: both
have only an independent volume fraction.

The stress T, acting on phase 2 can be defined at
any point in the body. The stress T, is here referred
to as a partial stress. Assuming each phase is linear
viscous, the partial stress of phase « may be written as

77{/' = _(/)117“(5i/ + ;'Y(f)RDZ/\()‘f/ + 24)1‘“9(1)7/" (14)
where p, is the partial pressure of phase «, D;” is the
deformation rate of phase o, p, is the shear viscosity
of phase %, and 7, is the second viscosity of phase «.

The total stress of a multiphase continuum, 77, may
be related to the partial stress of each phase T,/ as

Tf/ - 2(77, - /)x”z.f“ot./‘)7

where the second term in the right hand side is an
apparent stress due to the transport of linear momen-
tum (e.g. Passman, 1977. Nunziato and Walsh, 1980).
In fact, the formulation of this relationship has been
applied to multicomponent mixtures, motivated by the
classical kinematic theory of gas mixtures (Truesdell,
1957, Truesdell and Toupin, 1960). This relationship
may, therefore, be regarded as a fundamental assump-
tion for the theory of continuum mechanics for multi-
phase matenials.

For a two-phase material, using the relationship
between total stress and partial stresses expressed by
equation (15), the constitutive equation of a multi-
phase continuum (13). and the constitutive equation of
each phase (14), the following relationship is obtained,

(15)

T)+ &0 + 2Dydy + 2Dy =

o

D (= upadis + nh, DYy 55

x=1

+ 26,10, D — pity ity ). (16)

Because the stress of a multiphase continuum in equili-
brium should be the sum of the partial pressure of
each phase, it follows that

T) == (d.p0y). (17)
and equation (16) can be reduced to
Ep,dy + ADidy + 2Dy
= Z(/QQ@DZ,\()}/ + 26,40, D} — pity ity ;). (18)

=1

Entropy production rates

Let ¢, be the partial entropy production rate of
phase « per unit volume of multiphase material. The
total entropy production rate of the multiphase ma-
terial ¢ is then, by the additive relation of the entropy
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production rate,
(19)

¢ = Z(p,,.

The entropy production rate per unit volume for vis-
cous flow WV is
Ty

¥ TR

(20)

where T, is the viscous stress tensor (e.g. de Groot
and Mazur, 1962). The upper term in the right hand
side of equation (20) is the dot product of T;;" and D,

From equations (13) and (20), the entropy pro-
duction rate of the multiphase material per unit
volume, ¢, is given as

(g_:(/.s(s,',‘ + ;.D/\v/((ji/' + 2}(1),‘/)1),-/
0 '

(21)

@ =
From equations (14) and (20). the partial entropy pro-
duction rate ¢, is given by

(Aap, D705 + 2,10, D},-)D?}-
P, = J .

Substituting equations (21) and (22) into equation (19),
yields

(é(/)z()‘f/’ + )~D/(Av(5// + 2,[[D,'/)D,'/'

= (), D05+ 20,00, D)DY.

=1

[§]
[9%)
—

FLOW IN ROCKS AS A TWO-PHASE
CONTINUUM

Rocks will now be considered as a two-phase conti-
nuum and the flow of these rocks will be considered
on the basis of the above relations. The rock will be
assumed to be composed of two solid phases, | and 2.
The rock is also assumed to be fully dense, i.e. to have
zero porosity, so that ¢;+¢-=1. The deformation is
assumed to be incompressible, i.e. Dy =0. It is further
assumed that the volume fraction of each phase
remains constant during deformation, i.e. ¢, =0. Each
phase is assumed to be uniformly distributed through-
out the aggregate. i.e. V (¢,,) = 0. The apparent
stress result from the transport of linear momentum
owing to the relative velocity of each phase with
respect to mean velocity is also assumed to be zero.
This is because the flow in rocks can be regarded as
slow flow, and the influence of apparent stress on the
total stress is so small that it can be neglected.

Using these conditions, equation (11) becomes

(171 + 4):?’3)[[)// + W,-,-] = (‘/)1?'1)[1)}/ + W}/]

+ (@[ Df + W3]
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equation (10) becomes

(Pror+ oo = (dyy ) + (Par)on. (25)
cquation (18) becomces
1Dy = by, D}/- + (/)3;431),?,., (26)
and cquation (23) becomes
1DyDy = 111 DDy + g DDy (27)
Substituting equation (25) into equation (24),
(D171 + dri0)Dy = (¢171)D) + (i) D (28)

where the following relationships have been used:
W= e, Wih=euo™ 4, and ey is the permutation
symbol.
Rearranging (26), (27) and (28)., we have,
l Rl b) R
(P73 + @77 — [Pyt — 7a14y)”

+ 21 iy 7y F ‘/’z?'g)z]ll

(1) D (Dt + Pt a = 0. (29)
Dl — [Para(r71 + Pova) — ainptllp ) + Payn) D.
v ([papa(Pr7y + Pava) — ppainld s "
=y () + dava) — w7 1dain)
(30)
Do [P0 — @rn(dyy) + G2l 7y + o) D.
! ([Dara(Pyy + Pava) — 1painldy 7y "
=[P+ bava) — by lar)
(3h

Equation (29) relates the bulk rock viscosity u to .,
o ¢y, v, and o5 Equations (30) and (31) relate the
deformation rate of each phase to the deformation
rate of the bulk rock.

Bulk rock viscosity—volume fraction relationship

Equation (29) may further be simplified using the
density contrast, a = /7. the viscosity contrast,
h = p>/py, and the normalized bulk rock viscosity
W= . as

*9

b, + (1 — de ]

—p (L= dh—a) + 2hp + a1 — o))t
+ bl 4+ all — GO — )+ )] =0. (32)

We assume (i < j», hence h> 1. Solutions to this quad-
ratic equation are
W= (1=he, + b, (33)

and
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1

Fig. 1. Schematic curves showing the relation between the normal-

ized bulk rock viscosity (u* = p/u,) and the volume fraction of less

viscous phase (¢;) predicted by the model. Mode | behaviour shows

a linear relationship, mode 2 behaviour shows a non-linear relation-
ship. & is the viscosity contrast between the phases (u»>/pt)).

) [a2 —2a(a — D, +(a - 1)2¢§]b
a @+ (b =), |

(34)

The solution given by equation (33) yields a linear
relationship between p* and ¢, (Fig. 1), and indicates
that u* is independent of the density contrast beha-
viour of the two phases. This relationship is named
mode 1 behaviour. The solution given by equation (34)
implies that providing the a # b relationship, p* vs ¢,
i1s non-linear and dependent on both of the density
and viscosity contrasts (Figs 1 & 2). This is named
mode 2 behaviour. Where a = b, equation (34) is
reduced to equation (33). In mode 2 behaviour, the
rate of decrease of the bulk rock viscosity decreases as
the density contrast increases (Fig. 2a). The rate of
decrease increases with increase of the viscosity con-
trasts (Fig. 2b).

Deformation-rate of constituent phases

Equations (30) and (31) relate the deformation rate
of each phase to the deformation rate of the bulk
rock. The coefficients of D,; in these equations is desig-
nated the deformation rate partition coefficients of
phase 1 and 2, P; and P,, respectively. Thus
D,-,-l =P Dy, D,;,-zﬁ P>D,;. Using the density contrast, a,
the viscosity contrast, A, and the normalized bulk rock
viscosity, p*, the deformation rate partition coeflicients
P, and P, may be expressed as

[p(p) +a(l — 1)) — ap* (P + a(l — )

Pr=""", vai —op) —arip, =
—[pi(P) +a(l — ) — p* P la)

and

py = W=l = )y el =)

T =)y +a(l — ) —ap*(1 = ¢]
—) + a1l = @) — N1 — ¢)a)

As shown above there are two relationships between
w* and ¢, i.e. mode | and mode 2. For mode 1 beha-
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viour, substituting equation (33) into equations (35)
and (36), we have

P1:P2:1; (37)

i.e. the deformation rate of each phase are equal to
that of the bulk rock. For mode 2 behaviour, substi-
tuting equation (34) into equations (35) and (36), the
partition coefficients become

P _blat ¢, —agy)

T2+ —a), %)
_ala+ ¢, —ag))
R >

1.e. the deformation rates of each phase are dependent
on the density contrast, the viscosity contrast, and the
volume fraction ¢,. In mode 2 behaviour the ratio of
the two deformation rate partition coeflicients P, and
P, is equal to the ratio of the viscosity contrast and
the density contrast,

L = é (40)

Pz a
Thus, if the viscosity contrast is greater than the den-
sity contrast (regime 1 in Fig. 3), the deformation rate
of the less viscous phase is larger than that of the
more viscous phase. Alternatively, if the viscosity con-
trast is smaller than the density contrast (regime 2 in
Fig. 3), the deformation rate of the less viscous phase
is smaller than that of the more viscous phase. If

constant viscosity contrast : b = 30

a=25

*20 a=20
a=15

= a=1.0
10 a=05

0 0.2 04 06 0.8 1.0

o

151\ constant density contrast : a = 1.0
10 b=40
* b=20
= b=10
b=5
5 b=2
(b)
0

0 0.2 04 06 0.8 1.0
1

Fig. 2. The relationship between the normalized bulk rock viscosity

(u*) and the volume fraction of the less viscous phase (¢;) calculated

from equation (33): (a) for different density contrasts (¢ = y,/7,) and
(b) for different viscosity contrasts.
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regime 1
D; > D;
regime 2
D, < D

a

Fig. 3. Two regimes of flow behaviour defined by the relative defor-
mation rates of the constituent phases, as plotted in viscosity con-
trast (h)-density contrast («) space. In regime | (h>a) the

deformation rate of the less viscous phasc D,/l is larger than that of

the more viscous phase D,ﬂ while in regime 2 (b < «) the defor-

mation rate of the less viscous phase is smaller than that of the more

viscous phase. When « = b, the deformation rates of the two phases
are equal to each other.

a = b, the deformation rate of the less viscous phase is
consistent with that of the more viscous phase, thus, in
this case mode 1 only occurs.

The deformation rate partition coefficients for each
phase are shown as a function of density contrast in
Fig. 4. The two regimes of deformation rate partition-
ing delimited in «¢—b space (Fig. 3) correspond to the
two types of mode 2 behaviour. In regime 1 (¢ < b)
the partition coefficient for the less viscous phase is
greater than 1: i.e. the deformation is partitioned into
the less viscous (weak) phase. Increasing the volume
fraction of the less viscous phase decreases the parti-
tioning of deformation into the less viscous phase
(Fig. 5). In regime 2 (¢ < b), the partition coefficient
for the less viscous phase is always less than 1.
Increasing the volume fraction of the less viscous

- W R
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phase increases the deformation rate of the less viscous
phase relative to that of the more viscous phase
(Fig. 5).

The deformation rate partition coeflicients for each
phase are shown for different values of viscosity con-
trast as a function of volume fraction (Fig. 6) and den-
sity contrast (Fig. 7). It is seen that in the range of
¢$1>0.2 or of ¢ < 3, the partition coefhicient is insensi-
tive to the viscosity contrast provided this contrast is
greater than about 20-40, and is determined primarily
by the volume fraction and density contrast.

DISCUSSION

Comparison with laboratory data for flow strength of
nvo-phase rocks

There are some experimental data on deformation
of two-phase rocks that may be relevant to the theor-
etical model derived above. Jordan (1987) conducted a
series of deformation experiments using synthetic cal-
cite—halite rocks at temperatures up to 200°C, confin-
ing pressures of between 150 MPa and 400 MPa, and
strain-rates of between 107* s™' and 107> 7', and
observed a rapid decrease in strength as the volume
fraction of the less viscous phase, halite, was increased.
A similar result was obtained by Bloomfield and
Covey-Crump (1993) for the same system. The results
obtained by Price (1982) and Ross e¢f al. (1987) for
anhydrite-halite systems were also similar to those
obtained above.

P, =3
0.8 q)l = 02
0 =04
0.6
¢, =06

0.4

0.2 0,=08

0 a

1 2 3 4 5

Fig. 4. The relationship between the deformation rate partition coefficients of the constituent phases. Py, P» and the den-
sity contrast, «. as a function of the volume fraction of the less viscous phase. ¢, for different viscosity contrasts, b.
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P

+— regime | —we—— regime2 —»
low ¢,

|
|
|
|
1
I
I
i
I
i
|
|
1
i
I

T v, // M@¢,a
a=b{

' low ¢,

Fig. 5. A schematic diagram showing two regimes of flow behaviour
in the less viscous phase deformation rate partition coefficient-density
contrast space. In regime 1 the viscosity contrast is larger than the
density contrast and the deformation is partitioned into the less vis-
cous phase. In regime 2 the viscosity contrast is smaller than the den-
sity contrast and the deformation is partitioned into the more
viscous phase. The influence of the volume fraction of the less vis-
cous phase (¢) on the behaviour is also illustrated.

In these experiments, one phase (halite) was
deformed by intracrystalline plasticity but the other,
stronger phase, (calcite or anhydrite) was semibrittle.
Hence, the flow behaviour of the bulk rock and of
each phase may significantly depart from Newtonian.
To a first approximation, however, the notion of the
equivalent viscosity # that can be defined as n = g/3%,
where ¢ is the differential stress supported by the spe-
cimen at strain-rate & (Griggs, 1939; Carter and Heard,
1970), can be used. The equivalent viscosity n is
deduced from their experiments and is compared with
the present model. Then the viscosity contrast is

Py a=2
15 m=0.1
10p
$1=0.2
5 $1=0.3
S ¢1=0.5
— ¢1=0.9
0 A A A b
20 60 100 140
P1 a=0.6
a}
6=0.2
2 "m=0.3
¢:1=0.5
¢1=0.9
0 b
20 60 100 140

1575

replaced by the equivalent viscosity contrast. Figure 8
shows the experimental results of Jordan (1987, 1988)
and Price (1982) in comparison with the results esti-
mated from the model. The equivalent viscosity con-
trast in those experiments is estimated to be 6 for the
experiments of Jordan (1987) and Price (1982), and 7
for the experiment of Jordan (1988). The density con-
trast for calcite and halite is 1.3 and that for anhydrite
and halite is 1.1 (Holland and Powell, 1990). Despite
the simplifications and the assumptions made, mode 2
behaviour of the theoretical results are in good agree-
ment with the experiments.

Comparison with the behaviour of strain partitioning
obtained by Bloomfield and Covey-Crump (1993)

As mentioned above, the relationship between the
flow strength and the volume fraction in the two-phase
aggregates used in the experiment of Bloomfield and
Covey-Crump (1993) is similar to the results obtained
by Price (1982), Jordan (1987, 1988) and Ross er al.
(1987), i.e. the behaviour is consistent with the mode 2
behaviour. Moreover, Bloomfield and Covey-Crump
(1993) estimated the strain partitioning between the
phases during the experimental deformation of a two-
phase aggregate composed of calcite and halite using
both mechanical and microstructural methods. For the
mechanical method, the strain of both halite and cal-
cite in the aggregate were determined by two additive
relations of the flow stress and the strain using the

p2 a= 2
15
1.0
¢1=0.1
i $1=0.2
0.5t $:1=0.3
01=0.5
$1=0.9
20 60 100 140
P2 a=0.6
0.8
0.6
¢1=0.1
04 $1=0.2
$1=0.3
0.2 $1=0.5
¢=0.9
0 b
20 60 100 140

Fig. 6. The relationships between the deformation rate partition coefficients of the constituent phases and the viscosity
contrast () for different volume fractions at various density contrasts (a).
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P1 n =0.2

a=1
a=0.6

ONAO\OQE
o £ ®
N w

20 60 100 140

P1 o1 =04

a=2

a=1
a=0.6

S = N W A W
o f
w

20 60 100 140
P11 =06
a=3
2.5
20 a=2
a=1
L5 a=0.6
1.0
0.5
0+ b
20 60 100 140
P11 =08
a=3
1.6
1.4 a=2
1.2 a=1

20 60 100 140

Y.-T. TAKEDA

%] o =0.2
1.0
0.8 :g
0.6 a=1
0.4 a=06
0.2
0- b
20 60 100 140
P2 01 =04
1.0
0.8 :g
0.6 a1
0.4 a=06
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Fig. 7. The relationships between the deformation rate partition coefficicnts ol the constituent phases and the viscosity
contrast (h) for different density contrasts («) with various volume fractions of the less viscous phase.

stress—strain curves of the aggregates and single-phase
end members, halite and calcite. The mechanical analy-
sis suggests that there is a strain partitioning into the
less viscous phase, halite, and that there is a decrease
of strain partitioning into less viscous phase as its
volume fraction increases. In contrast, the microstruc-
tural analysis suggests that there is no strain partition-
ing between the two phases. The result they obtained
from the mechanical analysis is in accordance with the
mode 2a behaviour of our model.

The mode of the partitioning of deformation rate in
nature

The bulk flow in rocks must be related to the flow
of its constituent phases. As described above, the
model of multiphase continuum developed here de-
limits two modes of flow behaviour according to
whether there is no deformation rate partitioning
between the phases (mode | behaviour) or there is de-
formation rate partitioning (mode 2 behaviour). From
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comparison with experimental results mode 2 beha-
viour is more plausible than mode 1 behaviour in
nature. Mode 2 behaviour is further subdivided into
two regimes according to whether there is strain parti-
tioning into the less viscous phase (mode 2a beha-
viour), or the strain is partitioned into the more
viscous phase (mode 2b behaviour). In other words,
the less viscous phase 1s more ductile in mode 2a while
it becomes less ductile in mode 2b behaviour. A critical
parameter determining which mode occurs is the ratio
of the density contrast to the viscosity contrast.
Density contrasts of common rock-forming minerals
are usually close to unity. For example, albite/
quartz = 1.0 ~ .1, anorthite/quartzx 1.0~ 1.1, dolo-
mite/calcite ~ 1.0 ~ 1.1, enstatite/forsterite = 0.9 ~ 1.0,
diopside/forsterite = 0.9 ~ 1.0 (Holland and Powell,
1990). On the other hand, viscosity contrasts are more
variable, probably ranging over several orders of mag-
nitude, and therefore, it is expected that the viscosity
contrast is usually greater than the density contrast.
Therefore, mode 2a behaviour should dominate in
nature. However, theory predicts that mode 2b should
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also occur if the viscosity contrast is very small and is
less than the density contrast.

Strain refraction

The distribution of strain (or deformation rate) in
multilayer rocks in which layers have different rheolo-
gies 1s called strain refraction (e.g. Treagus, 1988). A
rule of strain refraction between two layers both of
which have Newtonian rheology is given by

K

&

where &; 1s the layer-parallel shear deformation rate in
layer i with viscosity u;. & is the layer-parallel shear de-
formation rate in layer j with viscosity p; (Cobbold,
1983; Treagus, 1983, 1988, 1993: Weijermars, 1992).
Thus the ratio of the layer-parallel shear deformation
rates is equal to the inverse viscosity contrast. For two-
phase rocks, in which phases are distributed homoge-
neously. the ratio of the deformation rate among
phases is given by equation {(40). When the density con-
trast between two phases in rocks is unity, the ratio of
deformation rates is equal to the inverse viscosity con-
trast. It is evident that the rule of strain refraction
obtained for the multilayer rocks is consistent with the
result obtained for multiphase rocks. A difference
between multiphase rocks and multilayer rocks is that
the relationship for multiphase rocks obtained in this
paper is independent of spatial direction, while the rule
of strain refraction obtained for multilayer rocks is
only valid in layer-parallel directions.

Other remarks on the present approach

The present approach provides a simple model for
the flow behaviour of two phase rocks. It should be
emphasized again that the volume fraction is the only
state varlable considered for describing the structure of
rocks and that the other microstructural features, such
as grain-size, grain-shape or grain boundary geometry,
the crystal lattice preferred orientation and other struc-
tural anisotropy, are not incorporated in the model. In
other words, the flow behaviour of the two phase rock
is only dependent on the volume fraction of the two
phases and is independent of microstructures.
However. natural rocks are highly variable in structure
and it is quite plausible that these microstructures
affect the flow behaviour in rocks, which has been an
important subject in structural geology (e.g. Handy,
1990, 1992; Tullis er al., 1991; Dell’Angelo and Tullis,
1996). The present model, therefore, clearly has a limi-
tation and needs to be treated with caution.
Nevertheless, it has value as a reference model to
which the behaviour of natural rocks can be com-
pared. It 1s hoped that the present model can be devel-
oped and improved, so as to incorporate any of the
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above mentioned structural features. For this purpose.
appropriate state variables that express these structural
variables will need to be formulated.

CONCLUSIONS

In this paper the flow of polymineralic rocks is con-
sidered on the basis of the notion of a multiphase con-
tinuum. In many previous attempts of formulating
flow properties of two-phase rocks. the manner of par-
titoming of deformation rate between constituent
phases was assumed cither implicitly or explicitly. In
the present treatment both the viscosity of two-phasc
aggregates and the partiioning of deformation rate are
determined as functions of the volume fraction and
mechanical propertics of constituent phases, assuming
lincar viscous rheologies. Two modes of behaviour are
theoretically identified: a linear rclation (mode 1), and
non-linear relation (mode 2). The non-linear relation
may be further subdivided into mode 2a and mode 2b
on the basis of partitioning of deformation rate for
each constituent phase. Mode 2a behaviour shows
good agreement with published deformation exper-
iments of synthetic two-phase rocks.
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