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Abstract-The notion of a multiphase continuum is applied to the problem of determining the flow properties 
of two-phase rocks. The assumptions made include (i) that both the bulk rock and the constituent phases have 
a linear viscous rheology, (ii) that the phases are uniformly mixed and distributed in the rocks. and (iii) that 
no segregation occurs during the deformation. A theoretical analysis is made assuming the additive relation- 
ships for the linear momentum. the stresses and the entropy productlon rates. Two possible relationships 
between the normalized bulk rock viscosity (the ratio of bulk rock viscosity to the viscosity of the less viscous 
phase) and the volume fraction of the constituent phase are derived. The first relationship is linear (mode I 
behaviour). while the second is non-linear (mode 2 behaviour). In mode 2 behaviour. the normalized bulk 
rock viscosity decreases at first rapidly and then less so as the volume fraction of the less viscous phase 
increases from zero. The rate of the initial rapid decrease in viscosity is in proportion to the viscosity contrast 
between two phases and in inverse proportion to the density contrast. The mode 2 behaviour shows good 
agreement with published deformation experiments of synthetic two-phase rocks. The bulk rock deformation 
rate can be related to those of the constituent phases. In mode I behaviour there is no deformation rate parti- 
tioning. In contrast. in mode 2 behaviour the ratio of the deformation rate partition coefficients of the less vis- 
cous phase to that of the more viscous phase is equal to the ratlo of the inverse viscosity contrast to the 
densit) contrast. This relatlonship corresponds to the rule of strain refraction derived for multilayer systems. 
Mode 2 behaviour can bc further subdivided into two regimes: one where the viscosity contrast is greater than 
the density contrast (mode 2:~). and a second where the opposite is true (mode 2b). In mode ?a behavioui 
more strain is partitioned into the less viscous phase: while. in mode 2b behnviour more strain is partltioned 
into the more viscous phase. ( 199X Elsevier Science Ltd. All rights reserved 

INTRODUCTION 

Almost all rocks in the crust and the mantle are poly- 
mineralic. Knowledge of the mechanical (and kin- 
ematic) flow behaviour of multiphase materials is, 
therefore, important in understanding mechanical 
states and dynamic behaviour of the lithosphere and 
asthenosphere. In addition. this information is useful 
for structural geologists and petrologists trying to 
reconstruct the original state of rocks using their 
knowledge of the final state and the physical properties 
of rocks. Much effort has been made to understand 
the rheological properties of polymineralic rocks in 
terms of their constituent phases and the microstruc- 
tures (Gay. 1968; Bilby et (I/., 1975: Price. 1982; 
Tharp, 1983; Ross cf (I/.. 1987; Jordan, 1987. 1988; 
Handy, 1990, 1992, 1994; Tullis et cd., 1991; Ji and 
Zhao. 1993, 1994; Bloomfield and Covey-Crump, 
1993; Dell’Angelo and Tullis, 1996; Zhao and Ji, 
1997). The flow strength of rocks that are composed of 
two solid phases has been investigated experimentally 
(Price, 1982; Jordan, 1987, 1988; Ross ct d., 1987; 
Bloomfield and Covey-Crump, 1993) and theoretically 
(Gay. 196X; Tharp, 1983; Jordan, 1988; Handy, 1990, 
1994; Tullis ct cl/., 1991; Ji and Zhao. 1993, 1994; 
Zhao and Ji, 1997). 

An important observation from experimental work 
is the presence of an abrupt drop in strength with only 
a small addition of a weaker phases (e.g. Price, 1982; 

Jordan. 19X7; Ross c’t d.. 1987). For example, in de- 
formation experiments of synthetic calcite+halite 
aggregates. Jordan (1987. 1988) observed an abrupt 
drop in strength with a small addition of the weaker 
halite phase and a subsequent further gentle decrease 
with increasing volume fraction of halite. Jordan 
(1988) ascribed this phenomenon to a discontinuous 
microstructural change at intermediate compositions, 
from a state of a load bearing framework in which 
almost all the load is supported by the stronger phase, 
to a state which is described by a two-block model 
and in which almost all the strain is accommodated by 
the weaker phase. Strictly speaking, however, the 
model Jordan (1988) used for lower volume fractions 
of the less viscous phase is only valid when one phase 
is inviscid material. Moreover the application of the 
model is limited to the case of large viscosity contrasts 
between the two phases and much lower volume frac- 
tions of the less viscous phase (e.g. Bloomfield and 
Covey-Crump, 1993; Ji and Zhao, 1994). Zhao and Ji 
( 1997) presented a model that predicts the flow 
strength of two-phase rocks on the basis of the fibre- 
loading model. A good agreement is obtained between 
the theory and the experimental observation. The 
fibre-loading mode1 is however, limited to low concen- 
trations of the ‘fibre’ material, and its application is 
limited to the case of uniaxial deformation. 

It is clear that the physical properties of composite 
materials will be related to those of the constituent 
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phases not only in terms of mechanical behaviour but 
also kinematic behaviour. In particular, an important 
question is how the deformation rate of the composite 
rock is related to deformation rate of its constituent 
phases. The bulk deformation rate is likely to be parti- 
tioned between its constituent phases. Some structural 
geologists use the term ‘partitioning’ to indicate spatial 
differences of flow properties in a rock body (e.g. 
Lister and Williams, 1983). However. I prefer the term 
‘distribution’ for this phenomenon and in this contri- 
bution I will use the term ‘partitioning’ to refer to 
differences in deformation rate between constituent 
phases at any point in a rock, in which the rock is 
treated as a continuum. 

In this paper I present 21 simple approach for deter- 
mining the flow properties of a composite rock from 
the properties of the constituent phases and the rock 
compositions on the basis of the notion of ;I multi- 
phase continuum, (also termed superimposed conti- 
nua). The multiphase continuum is a model of ;I 
heterogeneous medium that is composed of two 01 
more phases. The forerunner of the notion of :I multi- 
phase continuum was :I construction developed fol 
continuum mechanics of a multicomponent material 
(Truesdell. 1957; Truesdell and Toupin. 1960; 
Truesdell, 1984). This construction considers multi- 
component materials as continua in which several con- 
tinua composed of their own component materials are 
spatially surperimposed on each other (e.g. Bowen. 
1976; Truesdell, 1984). On the basis of a similar idea 
in continuum mechanics of multiphase material. multi- 
phase materials are treated as ;I continua in which sev- 
eral continua composed of their own phase material 
are spatially superimposed on each other (e.g. 
Passman, 1977: Passman ct L/I., 1984; Dobran, 1985: 
Dobran. 1991). Thus, despite the fact that the multi- 
phase material is not continuous. it can ne\,ertheless be 
treated as 21 continuum. in this approach multiphase 
properties are measured in terms of a compositional 
variable such as the volume fractions of constituent 
phases. Accordingly, details of the spatial distribution 
of constituent phases and other microstructural fca- 
tures such as grain-size and grain-shape are not con- 
sidered. The present approach implicitly assumes that 
the rock is statistically isotropic. Any physical property 
of a multiphase continuum can be related to those ot 
the constituent phases. The rclntionship may be de- 
rived from additive relationships for linear momentum. 
stress, and entropy production rate. It is assumed that 

both the flow behaviour of composite rocks and that 
of the constituent phases can bc described by linear 
viscous constitutive relationships. The obtained rcsul~s 

contain analytical relationships between the bulk rock 
viscosity (multiphase material as a whole), the voluine 
fraction of their constituent phases. and the physical 
properties of the constituent phases. The relationships 
between the deformation rata of constituent phases 
and the deformation rate of the bulk rock, i.e. defor- 

mation rate partitioning, is also derived. The obtained 
results are compared with published experiments and it 
is shown that the present simple approach satisfac- 
torily accounts for the experimentally observed flow 
behaviours of two-phase rocks. 

FLOW IN A MULTIPHASE CONTINUUM 

Let B, be ;I body composed of a phase x. For 21 

multiphase material that consists of two or more 
phases, it is supposed that a sequence of bodies 
B,. x = I. 2. 3,. _. occupy the same region of 
space simultaneously (Truesdell. 1984). Let X, he ;I 
material point within ;I body 8,. The motion of 
B, is the time sequential mapping of B, onto a 
three-dimensional space as 

.\- = .v( x,. I). (I) 

where I is time. The velocity of phase x may be 
defined by 

(2) 

Since the total linear momentum of a muttiphasc 
material in a given region is the sum of the lineal 
momenta of each phase. 

where IJ is the bulk mass density of the multiphase 
material. o7 is the partial mass density of the phase x. 
and I’ is the mean velocity of the material. The bulk 
mass density is the sum of the partial mass densities of 
each phase. 

where the partial mass density is the mass of phase x 
per ulnit volume of muttiphase material. 

[I7 = Cl>,;*,. (5) 

in which ;‘? is the mass of phase z per unit volun~c 01 
phase x. and (/I-/ is the volume fraction of phase %. 

Substituting equations (4) and (5) into equation (3) 
we have 

In order to obtain the relationship between the velocity 
gradients for each phase and that for the bulk system, 
the gradient of the terms in equation (6) is taken and 
this yields 
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where LL, is the velocity of phase c( relative to the mean 
velocity, 

II, = v, - v. (8) 

and the notation @ means the tensor product. 
Similarly, the operation curl of terms in equation (6) 
give 

(9) 

Using the vorticity vector, equation (9) becomes 

where (,I is the vorticity vector of bulk material, and 
(11~ is the vorticity vector of phase r. Following the 
usual practice, we can write the velocity gradient as 
the sum of the symmetric deformation rate tensor and 
the skew-symmetric spin tensor. Thus, equation (7) 
may be rewritten as 

where D, is the deformation rate tensor of the bulk 
material, W,, is the spin tensor of the bulk material, 
D,,’ is the deformation rate tensor of phase x. and M/,’ 
is the spin tensor of phase X. 

Goodman and Cowin (1972) suggested the following 
constitutivc relation for a granular material composed 
of solid particles and a vacuum: 

T,, = T,,(c/+,. 4. Vci,. ci,. 0. WI, D,,). (12) 

where T,, is a stress tensor. 9 is the volume fraction of 
the granular particles, &, Vcb. and $ are, respectively. 
the initial value, the gradient measured in a reference 
frame fixed to the material, and ;I time derivative of 
the volume fraction of the particles, and (I is the tem- 
perature. VII is the thermal gradient, and D,, is the de- 
formation rate tensor. From thermodynamical 
considcl-~itions. these workers derived the following re- 
lationship, 

7;, - 7’,: = <c/)0,, + iDi,,, d;, + 211 D,i. (13) 

where T;," is the equilibrium stress. t is the linear coef- 
ficient for the time derivative of volume fraction of the 
granular particles. I_( is the shear viscosity, i, is the sec- 
ond viscosity. and cj;, is the Kronecker delta. Although 
equation (I 3) is derived for granular materials and 
there is no vacuum in my model, it can nevertheless be 
used as a linear constitutive equation for the two- 
phase material considered here, because there is formal 

agreement in relation to the constitutive relation: both 
have only an independent volume fraction. 

The stress T;,' acting on phase r can be defined at 
any point in the body. The stress Ti/^* is here referred 
to as a partial stress. Assuming each phase is linear 
viscous, the partial stress of phase c( may be written as 

TG = -$,/~%6;i + ;q+,D;t,h,i + 2d,/1rDG, (14) 

where /7,X is the partial pressure of phase x, D;,' is the 
deformation rate of phase X, ~1~ is the shear viscosity 
of phase r, and I., is the second viscosity of phase a. 

The total stress of a multiphase continuum, T;,, may 
be related to the partial stress of each phase TiIy as 

(15) 

where the second term in the right hand side is an 
apparent stress due to the transport of linear momen- 
tum (e.g. Passman, 1977; Nunziato and Walsh, 1980). 
In fact, the formulation of this relationship has been 
applied to multicomponent mixtures, motivated by the 
classical kinematic theory of gas mixtures (Truesdell, 
1957; Truesdell and Toupin, 1960). This relationship 
may, therefore, be regarded as a fundamental assump- 
tion for the theory of continuum mechanics for multi- 
phase materials. 

For a two-phase material, using the relationship 
between total stress and partial stresses expressed by 
equation (15), the constitutive equation of a multi- 
phase continuum (13). and the constitutivc equation of 
each phase (14). the following relationship is obtained, 

t; + ~&~,, + i.D,,,,6,i + ~/LO,, = 

+ 24y~yDc - PyLl,.ill,,,). (16) 

Because the stress of a multiphase continuum in equili- 
brium should be the sum of the partial pressure of 
each phase. it follows that 

(17) 

and equation (16) can be reduced to 

Let (py be the partial entropy production rate of 
phase 3: per unit volume of multiphase material. The 
total entropy production rate of the multiphase ma- 
terial (p is then, by the additive relation of the entropy 
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cp = X(/)7. (19) 

equation ( IO) becomes 

(C/1,;,, + ‘~~;‘2)(‘1 = ((i,,;),)ff,l + (&j.~)P)l. 

equation ( 1 X) becomes 

/IL),, = C/1,/1, D;, + Ci,+n;,, _ _ 

and equation (23) becomes 

,iQ,LJ, = C/),/L, Df,Df, + &,t,D;D;,. - _ 

The entropy production rate per unit volume for vis- 
cous flow Y is 

where T,,” is the viscous stress tensor (e.g. de Groat 
and Mazur, 1962). The upper term in the right hand 
side of equation (20) is the dot product of T!,” and n,,. 

From equations (13) and (20), the entropy pro- 
duction rate of the multiphase material per unit 
volume, cp, is given as 

fp = (<4(X, + ;Jh6,, + ~I~D,,)D,, 
0 

(21) 

From equations (14) and (20), the partial entropy pro- 
duction rate cpx is given by 

Substituting equations (21) and (22) into equation (19). 
yields 

(:&s,, + rLna,(s,, + 2kai,)D,, 

FLOW IN ROCKS AS A TWO-PHASE 
CONTINUUM 

Rocks will now be considered as a two-phase conti- 
nuum and the flow of these rocks will be considered 
on the basis of the above relations. The rock will bc 
assumed to be composed of two solid phases, 1 and 2. 
The rock is also assumed to be fully dense. i.e. to have 
zero porosity. so that (/I, + &= 1. The deformation is 
assumed to be incompressible. i.e. D,,,, = 0. It is furthel 
assumed that the volume fraction of each phase 
remains constant during deformation, i.e. (by y 0. Each 

phase is assumed to bc uniformly distributed through- 
out the aggregate. i.e. V (c/),;,~) = 0. The apparent 
stress result from the transport of linear momentum 
owing to the relative velocity of each phase with 
respect to mean velocity is also assumed to be zero. 
This is because the flow in rocks can be regarded as 

slow llow, and the influence of apparent stress on the 
total stress is so small that it can be neglected. 

Using these conditions, equation (I I ) becomes 

(25) 

(26) 

(27) 

Substituting equation (25) into equation (24). 

((b,;,, + &;‘2)Q, = ($,:I )D;, + ($~;~,)n;. (28) 

where the following relationships have been used: 

w,, = l’,,/,R)/,, w,,7 = P,,,~cu’ ,,. and oI,/> is the permutation 

symbol. 

(31) 

Equation (29) relates the bulk rock viscosity ,H to I(,, 
/12. (/I,. ;‘,, and ;‘?. Equations (30) and (3 I) relate the 
deformation rate of each phase to the deformation 
rate of the bulk rock. 

Equation (29) may further be simplified using the 
density contrast, ct = ;‘2;;‘i. the viscosity contrast, 
h = /‘Q/i,. and the normalized bulk rock viscosity 
/P = /L/L,. as 

[/I(i,, + G( I ~ (i,, )/IX2] 

_ ( c/j, ( I - C/l, )(h - lt$ + ?/x/l, + [(I( I ~ ci,, ,I2 )f 

+ h[cj,, + n( I ~ ri,,)]‘[h( 1 - (i,,, + c/5,] = 0. (32) 

We assume ,~rl < 1~~. hence h > I. Solutions to this quad- 
ratic equation are 

/II = (I - /?)(/I, + h, (33) 

ii n d 
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0 
$1 

1 

Fig. 1. Schematic curves showing the relation between the normal- 
ized bulk rock viscosity (p* = I(/F,) and the volume fraction of less 
viscous phase (4,) predicted by the model. Mode I behaviour shows 
a linear relationship, mode 2 behaviour shows a non-linear relation- 

ship. h is the viscosity contrast between the phases (pz/kc,). 

@+ = 
[u? - 2U(LI - l)r#Q + (a - l)Q;]h 

LIZ + (h - a2)4, 
(34) 

The solution given by equation (33) yields a linear 
relationship between p* and 4, (Fig. l), and indicates 
that @ is independent of the density contrast beha- 
viour of the two phases. This relationship is named 
mode 1 behaviour. The solution given by equation (34) 
implies that providing the a # h relationship, p* vs c$,, 
is non-linear and dependent on both of the density 
and viscosity contrasts (Figs 1 & 2). This is named 
mode 2 behaviour. Where u = h, equation (34) is 
reduced to equation (33). In mode 2 behaviour, the 
rate of decrease of the bulk rock viscosity decreases as 
the density contrast increases (Fig. 2a). The rate of 
decrease increases with increase of the viscosity con- 
trasts (Fig. 2b). 

Dqfbrmution-rate qf’ constituent phuses 

Equations (30) and (31) relate the deformation rate 
of each phase to the deformation rate of the bulk 
rock. The coefficients of D,j in these equations is desig- 
nated the deformation rate partition coefficients of 
phase 1 and 2, P, and P2, respectively. Thus 
D,’ = P, D,, D,‘= P2Dji. Using the density contrast, u, 
the viscosity contrast, h, and the normalized bulk rock 
viscosity, ,LL*, the deformation rate partition coefficients 
P, and P2 may be expressed as 

p = [Ngi, + 41 - 4,)) - w*1t4, + 41 - 4,)) 
(M@, + 41 - (6,)) - UP*144 ’ (35) 

-[4,(4, + 41 - 4,)) - P*+,lu) 

and 

[P* - (4, +41 - 4,)>1(44 +a(1 - 4,)) 
p2 =w -&,)(6,, +u(l -&))-up*(l -&)I’ (36) 

-[(b, + a(1 - 4,)) - p*l(t - &)a) 

As shown above there are two relationships between 
,~1* and 4,, i.e. mode I and mode 2. For mode 1 beha- 

viour, substituting equation (33) into equations (35) 

and (36), we have 

P, = P2 = 1; (37) 

i.e. the deformation rate of each phase are equal to 

that of the bulk rock. For mode 2 behaviour, substi- 

tuting equation (34) into equations (35) and (36) the 

partition coefficients become 

p Ja+b -4,) 
’ d+(h-a’)@, ’ 

p2 =4a+#, -@,I 
u2 + (h - u2)g!l, ’ 

(38) 

(39) 

i.e. the deformation rates of each phase are dependent 

on the density contrast, the viscosity contrast, and the 

volume fraction 4,. In mode 2 behaviour the ratio of 

the two deformation rate partition coefficients P, and 

P2 is equal to the ratio of the viscosity contrast and 

the density contrast, 

PI h -=- 
P2 a’ 

(40) 

Thus, if the viscosity contrast is greater than the den- 

sity contrast (regime 1 in Fig. 3) the deformation rate 

of the less viscous phase is larger than that of the 

more viscous phase. Alternatively, if the viscosity con- 

trast is smaller than the density contrast (regime 2 in 

Fig. 3), the deformation rate of the less viscous phase 

is smaller than that of the more viscous phase. If 

30 
L 

constant viscosity contrast : b = 30 

20 a = 2.5 
9 a = 2.0 

a=1.5 

K 

a=1.0 
10 a = 0.5 

(a) 

0 

0 0.2 0.4 0.6 0.8 1.0 

$1 

15 

Ill 

constant density contrast : a = 1 .O 

0 I 
0 0.2 0.4 0.6 0.8 1.0 

$1 

Fig. 2. The relationship between the normalized bulk rock viscosity 
(AL*) and the volume fraction of the less viscous phase (4,) calculated 
from equation (33): (a) for different density contrasts ((I = yrhI) and 

(b) for different viscosity contrasts. 
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b 

a 

Fif. 3. Two regimes of llow behaviour defined by the rclati\e defo-- 
mation rates of the constituent phases. as plotted in viscosity con- 
trast (17) density contrast ((I) space. In regime I (/I > 0) the 
deformatmn rate of the less v~s_xu~ phase D,, ’ is Inrrcr than that ol c 
the more viscous phase D!,‘_ while in regime 2 (h < u) the defor- 
mation rate of the less viscous phase IS smaller than that of the more 
viscous phase. When t, = h. the deformation rates of the two phases 

are equal to each other. 

CI = h, the deformation rate of the less viscous phase is 
consistent with that of the more viscous phase, thus. in 
this case mode 1 only occurs. 

The deformation rate partition coefficients for each 
phase are shown as 21 function of density contrast in 
Fig. 4. The two regimes of deformation rate partition- 
ing delimited in o-h space (Fig. 3) correspond to the 
two types of mode 2 behaviour. In regime 1 (CI < h) 
the partition coefficient for the less viscous phase is 
greater than 1; i.e. the deformation is partitioned into 
the less viscous (weak) phase. Increasing the volume 
fraction of the less viscous phase decreases the parti- 
tioning of deformation into the less viscous phase 
(Fig. 5). In regime 2 (LI < h), the partition coefficient 
for the less viscous phase is always less than I. 
Increasing the volume fraction of the less viscous 

Pl 

2 

1.5 

1 

b=2 

a 

Pl 9, = 0.2 b = 30 
6 
5 
4 

3 
2 
1 

1 2 3 4 5 
a 

phase increases the deformation rate of the less viscous 
phase relative to that of the more viscous phase 
(Fig. 5). 

The deformation rate partition coeficients for each 
phase are shown for different values of viscosity con- 
trast as a function of volume fraction (Fig. 6) and den- 
sity contrast (Fig. 7). It is seen that in the range of 
(b, > 0.2 or of LI < 3. the partition coefficient is inscnsi- 
tive to the viscosity contrast provided this contrast is 
greater than about 20-40, and is determined primarily 
by the volume fraction and density contrast. 

DISCUSSION 

There are some experimental data on deformation 
of two-phase rocks that may be relevant to the theor- 
etical model derived above. Jordan (1987) conducted a 

series of deformation experiments using synthetic cal- 

citeehalite rocks at temperatures up to 2OO”C, confin- 
ing pressures of between 150 MPa and 400 MPa, and 
strain-rates of between lop4 s-’ and IO-’ s- ‘, an d 
observed a rapid decrease in strength as the volume 
fraction of the less viscous phase. halite, was increased. 
A similar result was obtained by Bloomfield and 
Covey-Crump (1993) for the same system. The results 
obtained by Price (1982) and Ross c>t I//. (19X7) for 
anhydriteehalite systems were also similar to those 
obtained above. 

1.2 

1 

0.8 

0.6 

P2 b=2 
I 9, = 0.2 ___---- 

a 

p2 b = 30 
0.8 I $I = 0.2, 

0.6 

0.4 

0.2 

0 a 
1 2 3 4 5 

Fig. 4. The relationship between the deformation rate partition coetticients of the constituent phases. PI. P2 and the den 
sity contrast, LI. as a function of the volume fraction of the less viscous phase. C/I ,, for different viscosity contrasts. h. 
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a 

Fig. 5. A schematic diagram showing two regimes of flow behaviour 
in the less viscous phase deformation rate partition coefficient-density 
contrast space. In regime 1 the viscosity contrast is larger than the 
density contrast and the deformation is partitioned into the less vis- 
cous phase. In regime 2 the viscosity contrast is smaller than the den- 
sity contrast and the deformation is partitioned into the more 
viscous phase. The influence of the volume fraction of the less vis- 

cous phase (4,) on the behaviour is also illustrated. 

In these experiments, one phase (halite) was 

deformed by intracrystalline plasticity but the other, 

stronger phase, (calcite or anhydrite) was semibrittle. 

Hence, the flow behaviour of the bulk rock and of 

each phase may significantly depart from Newtonian. 

To a first approximation, however, the notion of the 

equivalent viscosity ye that can be defined as ye = o/3$, 

where (r is the differential stress supported by the spe- 

cimen at strain-rate i (Griggs, 1939; Carter and Heard, 

1970) can be used. The equivalent viscosity q is 

deduced from their experiments and is compared with 

the present model. Then the viscosity contrast is 

replaced by the equivalent viscosity contrast. Figure 8 
shows the experimental results of Jordan (1987, 1988) 
and Price (1982) in comparison with the results esti- 
mated from the model. The equivalent viscosity con- 
trast in those experiments is estimated to be 6 for the 
experiments of Jordan (1987) and Price (1982). and 7 
for the experiment of Jordan (1988). The density con- 
trast for calcite and halite is 1.3 and that for anhydrite 
and halite is 1.1 (Holland and Powell, 1990). Despite 
the simplifications and the assumptions made, mode 2 
behaviour of the theoretical results are in good agree- 
ment with the experiments. 

Comparison lcith the hehaviour qf’ strain partitioning 

obtained by Bloomfield and Covey-Grump (1993) 

As mentioned above, the relationship between the 
flow strength and the volume fraction in the two-phase 
aggregates used in the experiment of Bloomfield and 
Covey-Crump (1993) is similar to the results obtained 
by Price (1982), Jordan (1987, 1988) and Ross et al. 
(1987), i.e. the behaviour is consistent with the mode 2 
behaviour. Moreover, Bloomfield and Covey-Crump 
(1993) estimated the strain partitioning between the 
phases during the experimental deformation of a two- 
phase aggregate composed of calcite and halite using 
both mechanical and microstructural methods. For the 
mechanical method, the strain of both halite and cal- 
cite in the aggregate were determined by two additive 
relations of the flow stress and the strain using the 

P2 a=2 

60 

$bl=o.l 
41=0.2 

b’Z.5” 
$I& 

140 
b 

P2 a = 0.6 

Fig. 6. The relationships between the deformation rate partition coefficients of the constituent phases and the viscosity 
contrast (h) for different volume fractions at various density contrasts (a). 
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stress-strain curves of the aggregates and single-phase 
end members, halite and calcite. The mechanical analy- 
sis suggests that there is a strain partitioning into the 
less viscous phase, halite, and that there is a decrease 
of strain partitioning into less viscous phase as its 
volume fraction increases. In contrast, the microstruc- 
tural analysis suggests that there is no strain partition- 
ing between the two phases. The result they obtained 
from the mechanical analysis is in accordance with the 
mode 2a behaviour of our model. 

The bulk flow in rocks must be related to the flow 
of its constituent phases. As described above, the 
model of multiphase continuum developed here de- 
limits two modes of flow behaviour according to 
whether there is no deformation rate partitioning 
between the phases (mode I behaviour) or there is de- 
formation rate partitioning (mode 2 behaviour). From 
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Fig. 8. Results of expermental investigations on two phase aggre- 
gates compared with the predictions of the model. The solid lines 
show predictions of the model. The solid arcles show results of ex- 
pcriment. (a) Model for (I = 1.3 and h = 6. Experimental data from 
Jordan (1987). calcite halite aggregates at 20 C, 150 MPa confining 
pressure and strain rate of IO-” 5-I. (b) Model for (I = 1.3 and 
h = 7. Experimental data from Jordan (1988). calcite+halitc aggre- 
g~t,tcs at 200 C. 200 MPa confining pressure and strain rate of 10m5 
s (c) Model for (I = I.1 and h = 6. Experimental data from Price 
(1982). anhydrite~halite uggregates at 200 ‘C. 100 MPa confining 
pressure and strain rate of 10~” 5-l. (d) Model for u = 1.1 and 
h = 6. Experimental data from Prlcc (19X2). anhydrite--halite 
awregates at 100 C. 200 MPa confining pressure and strain rate of’ _.. 

IO_” q-1. 

comparison with experimental results mode 2 beha- 

viour is more plausible than mode 1 behaviour in 

nature. Mode 2 behaviour is further subdivided into 

two regimes according to whether there is strain parti- 

tioning into the less viscous phase (mode 2a beha- 

viour), or the strain is partitioned into the more 

viscous phase (mode 2b behaviour). In other words, 

the less viscous phase is more ductile in mode 2a while 

it becomes less ductile in mode 2b behaviour. A critical 

parameter determining which mode occurs is the ratio 

of the density contrast to the viscosity contrast. 

Density contrasts of common rock-forming minerals 

are usually close to unity. For example, albite/ 

quartz 2 1 .O - 1. I, anorthitejquartz z 1 .O - 1.1. dolo- 
mite,‘calcite z 1 .O - 1. I, enstatite/forsterite Z 0.9 - 1 .O, 

diopside/forsterite z 0.9 - 1 .O (Holland and Powell, 

1990). On the other hand, viscosity contrasts are more 

variable, probably ranging over several orders of mag- 
nitude, and therefore, it is expected that the viscosity 

contrast is usually greater than the density contrast. 
Therefore. mode 2a behaviour should dominate in 

nature. However, theory predicts that mode 2b should 

also occur if the viscosity contrast is very small and is 
less than the density contrast. 

The distribution of strain (or deformation rate) in 
multilayer rocks in which layers have different rheolo- 
gies is called strain refraction (e.g. Treagus. 198X). A 
rule of strain refraction between two layers both of 
which have Newtonian rheology is given by 

Cl p/ _- 
E / -Ei’ 

where ?, is the layer-parallel shear deformation rate in 
layer i with viscosity ,u;. i;, is the layer-parallel shear de- 
formation rate in layer ,j with viscosity /Lj (Cobbold, 
1983; Treagus, 1983, 1988, 1993; Weijermars, 1992). 
Thus the ratio of the layer-parallel shear deformation 
rates is equal to the inverse viscosity contrast. For two- 
phase rocks, in which phases are distributed homoge- 
neously. the ratio of the deformation rate among 
phases is given by equation (40). When the density con- 
trast between two phases in rocks is unity. the ratio of 
deformation rates is equal to the inverse viscosity con- 
trast. It is evident that the rule of strain refraction 
obtained for the multilayer rocks is consistent with the 
result obtained for multiphase rocks. A difference 
between multiphase rocks and multilayer rocks is that 
the relationship for multiphase rocks obtained in this 
paper is independent of spatial direction, while the rule 
of strain refraction obtained for multilayer rocks is 
only valid in layer-parallel directions. 

The present approach provides a simple model for 
the flow behaviour of two phase rocks. It should be 
emphasized again that the volume fraction is the only 
state variable considered for describing the structure of 
rocks and that the other microstructural features, such 
as grain-size. grain-shape or grain boundary geometry, 
the crystal lattice preferred orientation and other struc- 
tural anisotropy, are not incorporated in the model. In 
other words, the flow behaviour of the two phase rock 
is only dependent on the volume fraction of the two 
phases and is independent of microstructures. 
However. natural rocks are highly variable in structure 
and it is quite plausible that these microstructures 
affect the flow behaviour in rocks, which has been an 
important subject in structural geology (e.g. Handy, 
1990, 1992; Tullis et cd., 1991; Dell’Angelo and Tullis, 
1996). The present model, therefore, clearly has a limi- 
tation and needs to be treated with caution. 
Nevertheless, it has value as a reference model to 
which the behaviour of natural rocks can be com- 
pared. It is hoped that the present model can be devel- 
oped and improved, so as to incorporate any of the 



157x Y.-T. TAKEDA 


